Comparison of Cavitation Phenomena in Transparent Scaled-up Single-Hole Diesel Nozzles

نویسندگان

  • L. C. Ganippa
  • J. Chomiak
چکیده

The structure and evolution of cavitation in a transparent scaled-up diesel nozzle having a hole inclined at 90, 85, 80 and 0 degree to the nozzle axis has been investigated using high-speed motion pictures, flash photography and stroboscopic visualization. Observations revealed that at the inception stage, cavitation bubbles were not seen at the same locations in all the four nozzles. Cavitation bubbles grew intensively and developed into cloud-like structures. Shedding of the cloud cavitation was observed. When the flow was increased further the cloud-like cavitation bubbles developed into a dense large-scale cavitation cloud extending downstream of the hole. Under this condition the cavitation started mainly as a glassy sheet at the entrance of the hole. Until this stage the spray appeared to be symmetric. When the flow was increased beyond this stage, a sheet of cavitation covered a significant part of the hole on one side, extending to the hole exit. This non-symmetric distribution of cavitation within the hole resulted in a jet, which atomized on the side where more cavitation was distributed and non-atomizing on the side with less cavitation. The distribution of cavitation in the hole was different for different nozzles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Unsteady Nozzle Flow and Spray Formation under Diesel Engine Conditions

In this paper a numerical approach for the prediction of the unsteady atomization process of liquid fuel in Diesel engine is presented. The dependences between the transient nozzle flow and spray formation are analysed. For that purpose models to simulate unsteady nozzle flows including the transient behaviour of cavitation and two-phase atomization process are employed. Results of transient fl...

متن کامل

CFD Study of Needle Motion Influence on the Spray Conditions of Single-Hole Injectors

This work consists of studying the effect of needle motion of typical single-hole injectors on spray characteristics. Three-dimensional moving mesh simulations have been carried out to calculate the injection process of cylindrical and conical geometries. The CFD analysis includes a numerical model which simulates the effect of cavitation. Results show that the flow within the nozzle and at the...

متن کامل

Investigation the effects of injection pressure and compressibility and nozzle entry in diesel injector nozzle’s flow

Investigating nozzle’s orifice flow is challenging both experimentally and theoretically. This paper focuses on simulating flow inside diesel injector nozzle via Ansys fluent v15. Validation is performed with experimental results from Winkhofler et al (2001). Several important parameters such as mass flow rate, velocity profiles and pressure profiles are used for this validation. Results includ...

متن کامل

Simulation of transient cavitation processes in diesel injectors using KIVA with a Homogeneous Equilibrium Model

Abstract The high speed, transient cavitating flow distribution inside diesel injector nozzles with consideration of the opening and closing needle valve is calculated using a generalized equation of state (EOS) to describe the fluid density, a homogeneous equilibrium model (HEM) for phase change, and an arbitrary moving mesh to account for needle motion. The KIVA-3V code was modified for the g...

متن کامل

Sensor for Injection Rate Measurements

A vast majority of the medium and high speed Diesel engines are equipped with multi-hole injection nozzles nowadays. Inaccuracies in workmanship and changing hydraulic conditions in the nozzles result in differences in injection rates between individual injection nozzle holes. The new deformational measuring method described in the paper allows injection rate measurement in each injection nozzl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001